Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS

Joel Norris (SIO/UCSD)
Cloud Assessment Workshop
April 5, 2005
Outline

• brief satellite data description

• upper-level cover and “satellite view” low-level cover from surface cloud observations

• “cloud cover radiative forcing” anomalies

• regional and zonal mean cloud variability and trends

• possible reasons for disagreement between cloud and radiation datasets
Processing of ISCCP Data

• All ISCCP cloud types with tops above the 680 mb level were combined into the category of “upper-level” (mid+high) cloud

• All ISCCP cloud types with tops below the 680 mb level were combined into the category of low-level cloud

• Monthly 2.5°×2.5° values were averaged to seasonal or 72-day 5°×10° or 10°×10° values
Processing of ERBS Data

- ERBS all-sky OLR and RSW were adjusted for variations in satellite altitude
- 36-day data were used to avoid aliasing of the diurnal cycle by the precessing satellite
- 36-day $10^\circ \times 10^\circ$ values were averaged to seasonal or 72-day values
- sampling is poor at higher latitudes due to low-inclination orbit
EECRA Upper-Level Cloud Cover

• surface observers report total cloud cover \((N)\) and cloud cover of the lowest layer \((N_h)\)

• use random overlap to calculate upper-level cloud cover \(N_U = (N - N_h) / (1 - N_h)\)

• if low overcast and non-drizzle precipitation, assign \(N_U\) to 1 (nimbostratus is diagnosed)

• it is frequently not possible to separately calculate mid- and high-level cloud cover
Random Overlap Assumptions

• upper-level cloud covers the same relative fraction of sky where it is obscured by lower clouds as where it is not obscured

• average upper-level cloud cover is the same for when low-level cloudiness is overcast as when low-level cloudiness is not overcast (unless non-drizzle precipitation)

• the second assumption is more questionable, but better alternatives are not obvious
EECRA Low-Level Cloud Cover

• the “satellite view” of low-level cloud cover is the difference between total and upper-level cover: $N_L = N - N_U = N_h \times (1 - N) / (1 - N_h)$

• the difference between surface-viewed sky dome cover and satellite-viewed earth cover can be substantial for low cumuliform clouds
Processing of EECRA Data

• individual surface-observed cloud cover values were averaged to seasonal or 72-day 5°×10° or 10°×10° values

• steps were taken to avoid biases due to non-uniform spatial and temporal sampling and a minor code change in 1981
Cloud Cover Radiative Forcing Anomalies

• radiative effects of surface-observed cloud cover variability can be quantified in terms of “cloud cover radiative forcing” (CCRF) variability

• CCRF anomalies are anomalies in radiation flux solely due to anomalies in cloud cover

• albedo, emissivity, and other cloud and atmospheric properties are treated as constants
Assumptions of CCRF Estimation

• radiation flux varies linearly with changes in upper and/or low cloud cover

• LW CRF per unit upper cover is constant at each grid point (with seasonal cycle)

• low clouds have no effect on LW

• SW CRF per unit upper cover and SW CRF per unit low cover are constant at each grid point (with seasonal cycle)
Estimation of CCRF Anomalies

LW CCRF anomaly =
 upper-level cloud cover anomaly \times
 climatological LW CRF per unit upper cover

SW CCRF anomaly =
 upper-level cloud cover anomaly \times
 climatological SW CRF per unit upper cover +
 “satellite view” low-level cover anomaly \times
 climatological SW CRF per unit low cover
Calculation of Climatological CRF

- LW CRF is obtained from ERBE for 1985-89
 - ISCCP visible mean upper-level and mean low-level optical thicknesses are converted to albedo values for 1985-89
 - ISCCP visible cloud albedo is scaled by ERBE cloud albedo to convert to broadband
 - upper-level and low-level cloud albedo are multiplied by insolation to obtain upper-level and low-level SW CRF
Satellite-Surface Cloud Comparison

• EECRA vs. ISCCP total cloud cover, upper-level cloud cover, and “satellite view” low-level cloud cover

• CCRF anomalies estimated from surface-observed cloud cover vs. all-sky flux anomalies reported by ERBS
Two Regional Comparisons

European Land+Ocean (35-60°N 10°W-40°E)

- ISCCP Total
- EECRA Total
- ISCCP Upper
- EECRA Upper
- ISCCP Low
- EECRA Low
- EECRA Ovlp Low

Eastern China Land+Ocean (20-40°N 100-120°E)

- ISCCP Total
- EECRA Total
- ISCCP Upper
- EECRA Upper
- ISCCP Low
- EECRA Low
- EECRA Ovlp Low

Anomaly
Zonal Mean Land ERBS Comparison

Low-Latitude Land (30°S-30°N)

(a)

- OLR
 - LW
 - CCRF

- RSW
 - SW
 - CCRF

- Net
 - Net
 - CCRF

black = ERBS, red = estimated

Midlatitude NH Land (30-60°N)

(b)

- OLR
 - LW
 - CCRF

- RSW
 - SW
 - CCRF

- Net
 - Net
 - CCRF

black = ERBS, red = estimated
Zonal Mean Ocean ISCCP Comparison

(c) Low-Latitude Ocean (30°S-30°N)

(d) Midlatitude NH Ocean (30-60°N)

Cloud Cover Anomaly (%)

Upper
Total
Low
Cu

blue = ISCCP red = EECRA

blue = ISCCP red = EECRA
Tropical Land+Ocean ERBS Comparison

Low-Latitude Land+Ocean Region A

(a)

- OLR
- LW
- CCRF

- RSW
- SW
- CCRF

- Net
- Net
- CCRF

Anomaly (W m$^{-2}$)

black = ERBS
red = estimated

Low-Latitude Land+Ocean Region B

(b)

- OLR
- LW
- CCRF

- RSW
- SW
- CCRF

- Net
- Net
- CCRF

Anomaly (W m$^{-2}$)

black = ERBS
red = estimated

tropical Indo-Pacific
tropical Atlantic and eastern Pacific
Zonal Mean Ocean ERBS Comparison

tropical Indo-Pacific

North Atlantic and North Pacific
Tropical Indo-Pacific Ocean

Upper Cloud and COADS Divergence

Upper Cloud and SLP-reconstruct Div

Precipitation and COADS Divergence

annual climatology

1952-1997 trend
Tropical Indo-Pacific Ocean

Central Eq. Pacific (15°S-5°N 170°E-120°W)

Subtropical NE Pacific (5-25°N 120-180°W)
Tropical Indo-Pacific Ocean

“Surface-view” Low-Level Cloud

annual climatology

1952-1997 trend

“Satellite-view” Low-Level Cloud

“Surface-view” Low-Level Cloud

“Surface-view” Low-Level Cloud

“Satellite-view” Low-Level Cloud
Satellite-Surface Comparison Results

- EECRA, ISCCP, and ERBS show similar upper-level cloud cover and OLR trends
- EECRA and ISCCP show different low-level and total cloud cover trends
- EECRA and ERBS show different SW CCRF and RSW trends over low-latitude oceans
- EECRA upper-level cloud trends are similar to circulation trends over the tropical Indo-Pacific, but low-level cloud trends are not
ISCCP Total Cloud Cover Trend

largest decreases at limbs of geostationary satellites
ISCCP Optically Thin Cloud Cover

Trends in optically thin cloud cover primarily responsible for total cloud cover trend.

Cloud variability has substantial coherence within geostationary satellite footprints.
Radiation Flux from ISCCP

Figure 6. TOA flux anomaly time series for ISCCP-FD and ERBS for (a) $S\uparrow$, (b) $L\uparrow$, and (c) $N\uparrow$. Values are 36-day averages for the zone, 20°S to 20°N, with mean seasonal cycle removed and the average for 1985–1989 set to zero. See comparison statistics in Table 7.

from Zhang et al. (JGR 2004)
ISCCP Artifacts vs. Agreement with ERBS

- artifacts occur for the optically thinnest clouds, i.e., those with least radiative impact
- a change in effective detection threshold could produce apparent variability in thin clouds
- satellite movement produces apparent variability due to ISCCP cloud overestimate at high viewing angles (G. Campbell, CIRA).
- calibration issue for footprint artifact?
Surface Total Cloud Cover Trend

increasing total cover primarily due to increasing cumulus
Artifacts in Surface Cloud Observations

- Artifacts can result from unidentified changes in observing procedure or archival errors.
- It is difficult to identify potential artifacts in ocean observations (ships travel everywhere).
- Surface/satellite disagreement may result from different observing methods (especially for Cu).
- Any low-level cloud artifact present in EECRA somehow does not affect the calculation of upper-level cover via random overlap.
EECRA and ERBS can be Reconciled If…

- the albedo of low-level clouds reported by surface observers has decreased
- low cloud types with less than average albedo increased and types with more than average albedo have decreased
- cumulus seen by surface observers have grown “taller” but not “wider”
- absorbing aerosol has a substantial influence on ERBS RSW
Conclusions

• comparison of multiple datasets suggests observations of decadal variability/trends are reliable for many regions

• surface cloud observations corroborate 1985-1997 decadal tropical cloud/radiation change

• zonal mean upper-level cloud cover has decreased over land since 1971 and ocean since 1952

• ENSO-like upper cloud trend pattern over the Indo-Pacific since 1952
Future Work

• documentation of regional variability and trends in cloud cover and CCRF

• comparison with precipitation and surface radiation data

• investigation of potential artifacts in surface cloud data