Low-Level Cloud Variability Over the Equatorial Cold Tongue in Observations and GCMs

David Mansbach and Joel Norris Scripps Institution of Oceanography

21 March 2006

<u>Outline</u>

- Large interannual low-level cloud variability occurs over the equatorial cold tongue.
- Advection over an SST gradient is a dominant factor controlling low-level cloud (e.g., Deser et al. 1993).
- The advection effect opposes the SST/LTS effect on cloudiness over the southern side of the cold tongue.
- The differing influence of advection and SST/LTS on low-level cloudiness provides a good opportunity to evaluate GCM boundary layer cloud simulations.

Observational Data and Methods

- Monthly mean daytime low-level cloud amount from ISCCP D2 adjusted for overlap by higher clouds
- Meteorological parameters from NCEP/NCAR reanalysis
- Ship synoptic reports from Hahn and Warren Extended Edited Cloud Report Archive (EECRA)
- Soundings from EPIC transects in 1999 and 2001
- Examine June-November cool season during 1983-2001
- Define "SST advection" as $-V_{1000}$ · ∇ SST

Climatology and Interannual Variability

ISCCP low-level cloud amount mean (lines) and standard deviation of monthly anomalies (color)

SST mean (lines) and standard deviation of monthly anomalies (color)

Relationships with Low-Level Cloud

cloud and SST correlation

cloud and SST advection correlation

light gray = 95% significant dark gray = 99% significant

Relationships with Low-Level Cloud

SST and SST advection correlation

Additional variance explained by regressing on SST advection in addition to SST

Warm and Cold Advection Composites

ANOMALOUSLY COLD ADVECTION

ANOMALOUSLY WARM ADVECTION

COLD MINUS WARM ANOMALY FIELDS

Plots are averaged over lower and upper terciles of monthly anomalies of SST advection in the designated region.

Warm and Cold Advection Zonal Means

Warm and Cold Advection Zonal Means

on southern side of cold tongue, warm SST advection is related to: -1 more clear sky

```
less Cu, Cu/Sc
```


Warm and Cold Advection Zonal Means

10

10

on southern Sea Surface Temperature (C) Nighttime Air-Sea Temperature Difference (C) 30 side of cold tongue, warm _ 1 25 SST advection -2 is related to: 20 -3 -20 -10 10 -20 Π -10 Π colder SST Nighttime Relative Humidity (%) Wind Speed (m/s) 100 10 higher RH_{sfc} 90 8 weaker wind_{sfc} 80 6 less negative 70 air-sea T diff 10 -20 -20 -10 -10Ñ Π latitude latitude

Warm and Cold Advection Soundings

on southern side of cold tongue, warm SST advection is related to:

shallower atmospheric boundary layer

lower RH near boundary layer top

Observational Summary

South of the Equator

strong cold tongue \rightarrow air flows over relatively colder water \rightarrow surface layer becomes stratified \rightarrow upward mixing of moisture is inhibited \rightarrow cloudiness is not sustained against subsidence and entrainment warming

weak cold tongue \rightarrow air flows over water of similar temperature \rightarrow surface layer not stratified \rightarrow upward mixing of moisture is not inhibited \rightarrow cloudiness is sustained against subsidence and entrainment warming

North of the Equator

strong cold tongue \rightarrow air flows over much warmer water \rightarrow surface layer becomes very destabilized \rightarrow much cloudiness is generated

weak cold tongue \rightarrow air flows over warmer water \rightarrow surface layer becomes destabilized \rightarrow some cloudiness is generated

Evaluation of GCM output

- Atmosphere-only AMIP runs with prescribed historical SST for NCAR CAM3 and GFDL AM2
- Coupled atmosphere-ocean runs from NCAR CCSM3 and GFDL CM2.0, CM2.1
- Coupled model output is difficult to evaluate since cloud, SST, and wind distributions substantially differ from the observed distributions

Climatology and Interannual Variability

Observed

GFDL AM2

Low-Level Cloud – SST Correlation

GFDL AM2

Cloud - SST Advection Correlation

30

GFDL AM2

Additional Variance due to SST Advection

Observed

Dataset and Longitude range		Mean temperature advection anomaly (K/day)		Mean low cloud anomaly (%)	
		Anomalously	Anomalously	Anomalously	Anomalously
		cool advection	warm	cool advection	warm
		S of Eq	advection S of Eq	S of Eq	advection S of Eq
ISCCP + reanalysis, 110-90W	Eq-5N	0.76	-0.53	-3.9	0.8
	5S-Eq	-0.59	0.56	3.3	-5.1
		0.05	0.44	4.0	
GFDL AM2 110-	Eq-5N	0.65	-0.44	-4.6	1.1
90W	5S-Eq	-0.37	0.35	1.8	-3.4
NCAR CAM3 110-	Eq-5N	0.88	-0.62	-5.4	3.7
90W	5S-Eq	-0.47	0.45	-5.5	4.3
CCSM3 130-110W	Eq-5N	0.54	-0.52	11.1	-14.2
	5S-Eq	-1.32	1.40	10.5	-11.9
GFDL CM2.0 105-125W	Eq-6N	0.13	-0.05	5.6	-5.7
	6S-Eq	-0.51	0.43	-1.1	1.3
GFDL CM2.1 130-90W	Eq-6N	0.23	-0.22	16.4	-11.0
	6S-Eq	-0.92	0.77	3.2	-2.2
CCSM3 110-90W	Eq-5N	0.18	-0.13	2.8	-4.3
	5S-Eq	-0.19	0.18	2.6	-4.0
GFDL CM2.0 110-90W	Eq-6N	0.00	0.02	2.3	-2.7
	6S-Eq	-0.21	0.18	0.5	0.3
		0.10			
GFDL CM2.1 110-90W	Eq-6N	-0.19	0.44	7.5	-10.1
	6S-Eq	-0.29	0.28	2.8	-3.0

Conclusions

- The GFDL AM2 reproduces the observed cloudadvection relationship when provided with prescribed historical SST, but the NCAR CAM3 does not.
- The GFDL and NCAR coupled atmosphere-ocean models do not reproduce the observed cloudadvection relationship, perhaps because the simulated eastern equatorial Pacific is too unrealistic.
- The cloud-advection relationship on the southern side of the cold tongue is a good diagnostic for GCM boundary layer cloudiness since it opposes the SST/LTS-cloud relationship.