Low-Level Cloud Feedback Estimated from CERES Co-Variability with Meteorology

Joel Norris and Ryan Scott (SIO/UCSD) Tyler Thorsen (NASA LaRC) Spring CERES Science Team Meeting May 8, 2019

Cloud Feedbacks in Recent Climate Models

- Cloud feedbacks are still greatest source of disagreement among models about climate sensitivity
- SW cloud feedback causes the most inter-model disagreement
- SW cloud feedback primarily arises from low-level clouds
- Climate models inconsistently and incorrectly simulate lowlevel cloudiness

Plot from Ceppi et al. (2017)

Estimating Low-Level Cloud Feedback

Challenge:

• Climate models *disagree* about low-level cloud response to changes in meteorological "controlling factors"

But:

• Climate models *agree* about how meteorological "controlling factors" will change due to global warming

Solution:

• Multiply observed cloud response to model-projected change in controlling factors – *Myers and Norris (2016)*

Conceptual Model

- Low-level clouds occur in the marine boundary layer
- Clouds respond on time scales of 0-48 hours to changes in large-scale meteorological conditions outside the boundary layer
- Clouds radiative forcing of the atmosphere and ocean outside the boundary layer occurs at time scales much longer than 2 days

Large-scale meteorological conditions

Conceptual Model

- When averaged over more than a few days, low-level clouds are in equilibrium with large-scale meteorological conditions
- Co-variability represents cloud response to changing large-scale meteorological conditions
- Large-scale meteorological conditions can be represented by several "cloudcontrolling factors"

Conceptual Model

- Cloud response to large-scale meteorology can be empirically determined by multilinear regression on cloud controlling factors
- Multilinear regression provides "partial derivatives" to distinguish specific and independent influence of each controlling factor on cloud
- Important since controlling factors covary differently with each other on interannual and climate change time scales

Myers and Norris (2016) Method

Leading order Taylor expansion®

- SW = SW cloud radiative effect
- SST = sea surface temperature
- EIS = estimated inversion strength
- RH₇₀₀ = 700 hPa relative humidity
- w₇₀₀ = 700 hPa pressure vertical velocity
- $$\label{eq:SSTadv} \begin{split} \text{SSTadv} &= V \cdot \tilde{N} \\ \text{SST} \text{ gradient} \\ \end{split}$$

$$\Delta SW = \frac{\partial SW}{\partial SST} \Delta SST + \frac{\partial SW}{\partial EIS} \Delta EIS + \frac{\partial SW}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial SW}{\partial SSTadv} \Delta SSTadv + \frac{\partial SW}{\partial \omega_{700}} \Delta \omega_{700}$$

- SW cloud response coefficients (red) obtained from multilinear regression on satellite and reanalysis data
- Changes in controlling factors caused by global warming (blue) obtained from climate model projections for 4xCO2 warming

Myers and Norris (2016) Analysis Domain

Low-latitude ocean grid boxes where monthly mean subsidence always occurs

- Minimizes confounding effects of high clouds
- But more weighting on stratocumulus and less weighting on trade cumulus
- Neglects midlatitude low-level cloud

hatching indicates domain of analysis

g) Mean annual omega700 (hPa day⁻¹)

SW Cloud Response to Controlling Factors

- Calculated via multilinear regression applied to monthly anomalies
- Climate models exhibit great disagreement with observations and each other

Plot from Myers and Norris (2016)

Black = coefficients from observed monthly anomalies

Color = coefficients from climate model monthly anomalies

Units: W m⁻² per interannual standard deviation of meteorological parameter

Changes in Controlling Factors for 4xCO2

• Climate models agree about changes in meteorological controlling factors

Estimated SW Cloud Feedback

• Actual SW cloud feedback produced by climate models for 4xCO2 spans a large range of positive and negative values

$$\Delta SW = \frac{\partial SW}{\partial SST} \Delta SST + \frac{\partial SW}{\partial EIS} \Delta EIS + \frac{\partial SW}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial SW}{\partial SSTadv} \Delta SSTadv + \frac{\partial SW}{\partial \omega_{700}} \Delta \omega_{700}$$

- Estimated SW cloud feedback has much smaller range of values
- About +0.4 W m⁻² K⁻¹ for low-level clouds over ocean

(+0.25 W m⁻² K⁻¹ scaled globally)

Shortcomings of Myers and Norris (2016)

- Examined limited area of ocean
- Assumed no mid- and high-level clouds were present
- Attributed characteristics of (mostly) subtropical stratocumulus to all low-level clouds over ocean

Need global ocean analysis that addresses mid- and high-level cloud presence

Challenges to Applying Method Globally

<u>Challenge</u>

Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

<u>Solution</u>

CERES Partial Radiative Perturbation (Thorsen et al. 2018)

Challenges to Applying Method Globally

<u>Challenge</u>

Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

<u>Solution</u>

CERES Partial Radiative Perturbation (Thorsen et al. 2018)

<u>Challenge</u>

Need to distinguish actual change in low-level cloud fraction from satellite-viewed change due to obscuration by higher clouds

<u>Solution</u>

Two new approaches

Approach 1: Adjust for Obscuring Upper Cloud

L = fractional area of grid box covered by **low-level cloud** viewed by satellite

U = fractional area of grid box covered by **upper-level** (mid+high) **cloud**

L_n = fraction of area **not obscured** by upper-level cloud that is covered by **low-level cloud**

$$L_n = \frac{L}{1 - U}$$

Climatology (overbar) and anomaly (prime)

$$\overline{L_n} = \frac{\overline{L}}{1 - \overline{U}}$$

$$L'_n = \frac{L' + U'\overline{L_n}}{1 - \overline{U}} \quad \checkmark$$

ignore 2nd-order terms (small)

fraction of upper cloud anomaly that • overlaps low cloud – add this to low cloud anomaly reported by satellite

Approach 1: Adjust for Obscuring Upper Cloud

Approach 2: Use Upper Cloud as a Predictor

 ΔL

- Let *U* be a predictor of *L* along with the meteorological parameters in the calculation of multilinear regression coefficients
- Meteorological coefficients will then represent partial derivative response with upper cloud obscuration held constant
- Do not include **U** as a predictor of low-level cloud change for 4xCO2 warming

$$= \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L}{\partial SSTadv} \Delta SSTadv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s$$
$$+ \frac{\partial L}{\partial U} \Delta U$$

Multilinear Regression Coefficients

Approach 1

- Non-obscured low-level cloud fraction anomalies L_n'
- Effects of upper-level cloud removed prior to regression

$$\Delta L_{n} = \frac{\partial L_{n}}{\partial SST} \Delta SST + \frac{\partial L_{n}}{\partial EIS} \Delta EIS + \frac{\partial L_{n}}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L_{n}}{\partial SSTadv} \Delta SSTadv + \frac{\partial L_{n}}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_{n}}{\partial W_{s}} \Delta W_{s}$$

Approach 2

- Satellite-viewed low-level cloud fraction anomalies *L'*
- Effects of upper-level cloud removed using upper cloud as a predictor in regression

$$\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L}{\partial SSTadv} \Delta SSTadv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s$$
$$+ \frac{\partial L}{\partial U} \Delta U$$

Multilinear Regression Coefficients

- Will have greater confidence if the two approaches yield similar coefficients
- *L_n* coefficients must be multiplied by the area fraction not obscured by upper cloud to correspond to satellite view

 $\frac{\partial L}{\partial EIS} \leftrightarrow (1 - \overline{U}) \frac{\partial L_n}{\partial EIS}$

$$\Delta L_{n} = \frac{\partial L_{n}}{\partial SST} \Delta SST + \frac{\partial L_{n}}{\partial EIS} \Delta EIS + \frac{\partial L_{n}}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L_{n}}{\partial SSTadv} \Delta SSTadv + \frac{\partial L_{n}}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_{n}}{\partial W_{s}} \Delta W_{s}$$

$$\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L}{\partial SSTadv} \Delta SSTadv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s$$
$$+ \frac{\partial L}{\partial U} \Delta U$$

Multilinear Regression Coefficients

Δ

- Will also have greater confidence if observed coefficients are consistent with expected physical processes
- Surface wind speed is added as a predictor to distinguish effects of wind speed from SST gradient in SSTadv.

$$\Delta L_{n} = \frac{\partial L_{n}}{\partial SST} \Delta SST + \frac{\partial L_{n}}{\partial EIS} \Delta EIS + \frac{\partial L_{n}}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L_{n}}{\partial SSTadv} \Delta SSTadv + \frac{\partial L_{n}}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_{n}}{\partial W_{s}} \Delta W_{s}$$

$$L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700}$$
$$+ \frac{\partial L}{\partial SSTadv} \Delta SSTadv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s$$
$$+ \frac{\partial L}{\partial W_s} \Delta U$$

 ∂U

Meteorological Controlling Factors

• Estimated Inversion Strength (EIS)

Expected Low Cloud Response to EIS

Entrainment of air through the capping inversion dries and warms the boundary layer

Expected Low Cloud Response to EIS

Entrainment of air through the capping inversion dries and warms the boundary layer

If the inversion strengthens

- Entrainment decreases
- Low-level cloudiness increases
- Less SW is absorbed by climate system

Observed Low Cloud Response to EIS

- Increased low-level cloudiness for stronger EIS almost everywhere
- Slightly larger response in eastern subtropical ocean regions
- Weak negative or zero response in deep convective regions where EIS is weakest and capping inversion is absent

Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)

Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient

Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient

If cold advection strengthens

- Cooler air over warmer water
- Near-surface instability increases
- More upward mixing of moisture
- Low-level cloudiness increases
- Less SW is absorbed by climate system

Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient

If warm advection strengthens

- Warmer air over cooler water
- Near-surface stability increases
- Less upward mixing of moisture
- Low-level cloudiness decreases
- More SW is absorbed by climate system

Observed Low Cloud Response to SSTadv

30°

- Increased low-level cloudiness for stronger (negative) cold advection almost everywhere
- Weak positive or zero response at lowest latitudes
- Larger response along subtropicalmidlatitude SSTadv transition zone

120°W

-0.05

Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)

Expected Low Cloud Response to W_s

Surface moisture flux increases with wind speed

Expected Low Cloud Response to W_s

Surface moisture flux increases with wind speed

If surface wind speed strengthens

- More upward mixing of moisture
- Low-level cloudiness increases
- Less SW is absorbed by climate system

Observed Low Cloud Response to W_s

- Increased low-level cloudiness for stronger surface wind at low latitudes
- Weak negative or zero response at middle latitudes (warm advection, cold SST)

Observed Low Cloud Response to W_s

- Increased low-level cloudiness for stronger surface wind at low latitudes
- Weak negative or zero response at middle latitudes (warm advection, cold SST)
- Weak negative or zero response in deep convective regions (weak wind)

Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
- Vertical velocity at 700 hPa (w₇₀₀)

Expected Low Cloud Response to w_{700}

Low-level cloud is capped by a subsidence inversion

Expected Low Cloud Response to W_{700}

Low-level cloud is capped by a subsidence inversion

If subsidence weakens

- Low-level cloud top rises
- Low-level cloudiness increases
- Less SW is absorbed by climate system

Observed Low Cloud Response to w₇₀₀

30°

• Slight tendency for increased low-level cloudiness for weaker subsidence in subsidence regime

120°W

0.05

Observed Low Cloud Response to W_{700}

- Slight tendency for increased low-level cloudiness for weaker subsidence in subsidence regime
- If obscuring effects of upper clouds are not taken into account, then satelliteviewed low-level cloud is reduced when ascent occurs

Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
- Vertical velocity at 700 hPa (w₇₀₀)
- Relative humidity at 700 hPa (RH₇₀₀)

Expected Low Cloud Response to RH₇₀₀

Entrainment of air from the free troposphere dries the boundary layer

Expected Low Cloud Response to RH₇₀₀

Entrainment of air from the free troposphere dries the boundary layer

If the troposphere humidifies

- Entrainment drying decreases
- Low-level cloudiness increases
- Less SW is absorbed by climate system

(also more LW emitted downward toward cloud, but appears to be a secondary effect)

Observed Low Cloud Response to RH₇₀₀

- Increased low-level cloudiness for greater humidity above boundary layer at low-latitudes (warmer SST)
- If obscuring effects of upper clouds are not taken into account, then satelliteviewed low-level cloud is reduced when free-tropospheric humidity is greater

Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
- Vertical velocity at 700 hPa (w₇₀₀)
- Relative humidity at 700 hPa (RH₇₀₀)
- Sea surface temperature (SST)

Expected Low Cloud Response to SST

Turbulence in the boundary layer drives the entrainment that dries and warms the boundary layer

Expected Low Cloud Response to SST

SST

Turbulence in the boundary layer drives the entrainment that dries and warms the boundary layer

If SST increases

- Cloud latent heating increases
- Turbulence increases
- Entrainment increases
- Low-level cloudiness decreases
- More SW is absorbed by climate system

Is this true beyond the subtropical stratocumulus regime?

Observed Low Cloud Response to SST

- Decreased low-level cloudiness for warmer SST in stratocumulus regimes
- Increased low-level cloud for warmer SST south of eastern cold tongue
- Strong positive coefficient in western equatorial Pacific may be artifact of obscuration adjustment in deep convective region
- Mixture of weak positive, weak negative, and near-zero coefficients elsewhere

Observed Low Cloud Response to SST

- If obscuring effects of upper clouds are not taken into account, then greater and more widespread reduction of satellite-viewed low-level cloud for warmer SST
- Could lead to overestimate of positive low-level cloud feedback

Radiative Effects of Cloud Change

 SW_{all} = TOA SW radiation flux averaged over cloudy and clear areas of the grid box

 SW_{clr} = TOA SW radiation flux from clear areas of the box

- *SW_{CRE}* = TOA SW cloud radiative effect
- *f_{cld}* = fractional area of grid box covered by **all clouds**

SW_{ovc} = TOA SW radiation flux from cloudy areas of the grid box (as if overcast)

$$SW_{all} = SW_{clr} - SW_{CRE}$$
$$SW_{ovc} = -\frac{SW_{CRE}}{f_{cld}}$$

 $SW_{all} = SW_{clr} + SW_{ovc} f_{cld}$

Radiative Effects of Cloud Change

 SW_L = TOA SW radiation flux from areas with low-level cloud (as if overcast) SW_U = TOA SW radiation flux from areas with upper-level cloud (as if overcast)

 $SW_{all} = SW_{clr} + SW_L L + SW_U U$

$$SW_{all} = SW_{clr} + SW_L(1-U)L_n + SW_U U$$

 $SW'_{all} = SW'_{clr} + \overline{SW_L}L' + SW'_L\overline{L} + \overline{SW_U}U' + SW'_U\overline{U}$

 $SW'_{all} = SW'_{clr} + \overline{SW_L}(1 - \overline{U})L'_n + SW'_L(1 - \overline{U})\overline{L_n} + \overline{SW_U}U' + SW'_U\overline{U}$

radiative anomaly from changes in low-level cloud fraction radiative anomaly from changes in low-level cloud optical thickness, etc. – **small, so ignore**

Radiative Effects of Low Cloud Change

 SW_L = TOA SW radiation flux from areas with low-level cloud (as if overcast)

 $\overline{SW_L}(1-\overline{U})$

radiative scaling for changes in low-level cloud fraction not obscured by higher clouds

multiply L_n cloud response coefficients by this scaling

multiply L cloud response coefficients without (1 – U)

SW Low Cloud Radiative Response to SST

30°

- Increased SW absorption for warmer SST in stratocumulus regimes
- Decreased SW absorption for warmer SST south of eastern cold tongue
- Warmer SST has near-zero effect on SW absorption over most other regions of the global ocean

120°W

-2

-3

LW Low Cloud Radiative Response to SST

• Pattern of LW cloud response has opposite sign to SW response but weaker magnitude (note smaller scale)

Net Low Cloud Radiative Response to SST

- More energy retained by climate system for warmer SST in stratocumulus regions
- Less energy retained by climate system for warmer SST south of eastern equatorial cold tongue
- Warmer SST has near-zero effect on net energy retained by climate system over most other regions of the global ocean
- Results of Myers and Norris (2016) may not be globally applicable

Net Low Cloud Radiative Response to SST

- If obscuring effects of upper clouds are not taken into account, then more energy retained by the climate system for warmer SST
- Could lead to overestimate of positive low-level cloud feedback

Upper level cloud not a predictor

Subsidence stratocumulus

- Cold advection
 SSTadv < 0 K day⁻¹
- Strong subsidence
 w₇₀₀ > 25 hPa day⁻¹
- Strong inversion EIS > 0.5 K

Trade cumulus

- Cold advection
 SSTadv < 0 K day⁻¹
- Weak subsidence
 - −5 < w₇₀₀ < 25 hPa day⁻¹
- Weak inversion

−2 < EIS < 0.5 K

Deep convection

• Ascent

w₇₀₀ < −5 hPa day⁻¹

• No inversion

EIS < -2 K

• Tropical

latitude < 30°

<u>Midlatitude</u>

- Warm advection
 SSTadv > 0 K day⁻¹
- And/or ascent
 w₇₀₀ < 0 hPa day⁻¹
- Stable

EIS > 0 K

Southeastern Pacific cold tongue

 General area of warm advection 10°S < latitude < 0° 80°W < longitude < 110°W

All regions

- Subtropical stratocumulus
- Trade cumulus
- Deep convection
- Midlatitude
- Southeastern Pacific cold tongue

Regional Low Cloud Radiative Response (SST)

For warmer SST ...

- Stratocumulus regions have largest increase in SW absorption
- Southeastern cold tongue has large decrease in SW absorption
- Trade cumulus, deep convective, and midlatitude regions have very weak increase in SW absorption
- Average ocean has very weak increase in SW absorption

Results of Myers and Norris (2016) are not globally applicable SW Radiative Response to SST

Regional Low Cloud Radiative Response (SST)

- Net energy gain by climate system due to warmer SST
- This is very slightly weaker than SW absorption due to very small offsetting effect of LW

Regional Low Cloud Radiative Response (EIS)

- Net energy loss by climate system due to stronger inversion
- Cloud response is larger for regions with a trade inversion

Regional Low Cloud Radiative Response (SSTadv)

- Net energy loss by climate system due to stronger cold advection
- Cloud response is larger for regions with stronger SST gradients

Regional Low Cloud Radiative Response (W_s)

- Net energy gain by climate system due to weaker surface wind
- Cloud response is larger for trade wind regions

Net Radiative Response to –W_s

Regional Low Cloud Radiative Response (w_{700})

- Very small or zero net energy loss by climate system due to weaker subsidence (note axis scale)
- Disagreement between two methods for handling obscuration may result from weak signal
- Cloud response is larger for regions dominated by subsidence

Regional Low Cloud Radiative Response (RH₇₀₀)

- Net energy loss by climate system due to greater relative humidity above the boundary layer
- Cloud response is much larger south of the eastern equatorial cold tongue where there is nearsurface stratification

Regional Low Cloud Radiative Response (All)

For a meteorological monthly anomaly of typical magnitude...

- Largest cloud radiative response for inversion strength and surface wind speed
- Smallest cloud radiative response for subsidence
- Small cloud radiative response in deep convective and midlatitude regions may be partly due to obscuration by higher clouds

Low-Level Cloud Feedback on Climate

Myers and Norris (2016) suggests the following changes will occur per degree global warming...

Obtained for subsidence regions; assumed to be globally uniform

- 1.4× warmer SST
- 0.35× stronger inversion
- 0.05× stronger SST advection
- 0.1× weaker surface wind
- 0.1× weaker subsidence
- 0.05× greater RH₇₀₀

Low-Level Cloud Feedback on Climate

- Positive low-level cloud feedback from warming SST *(except cold tongue)*
- Negative low-level cloud feedback from strengthening inversion
- Effects of other meteorological changes are small

What about differing areal sizes of climate regimes?

Low-Level Cloud Feedback on Climate

After adjustment according to area covered by each climate regime...

- Stratocumulus regime is relatively less important
- Cold tongue regime is much less important

Low-Level Cloud Feedback on Climate

The total low-level cloud feedback is

- Positive for stratocumulus regime
- Negative for trade cumulus, midlatitude, and southeastern Pacific cold tongue regimes
- Zero for deep convection regime
- About –0.1 W m ⁻² averaged over the global ocean
- About –0.06 W m ⁻² prorated globally – essentially zero

Known Shortcomings

Did not examine changes in cloud optical thickness

- Data are available
- Low-level cloud optical thickness feedback likely reinforces cloud fraction feedback

Projected 4xCO2 changes in SST and EIS from subsidence regime may not apply globally

- SST warming probably larger outside of stratocumulus regions
- EIS strengthening probably weaker outside of stratocumulus regions
- Estimated low-level cloud feedback is likely too negative

Uncertainties

Adjustment of low-level clouds for obscuring upper clouds assumes zero correlation

- Strong agreement between two approaches is reassuring
- Low and upper clouds probably preferentially co-occur in deep convective regions
- But deep convective region not so important due to widespread obscuration

Monthly means average over daily variability, especially at midlatitudes

• Can be investigated using multi-day means

What is the uncertainty range for coefficients derived from multilinear regression?

• Can be calculated using standard methods

Conclusions

Satellite combined with meteorology helps provide the best low cloud feedback estimate

- Empirical observation of cloud response to meteorological forcing
- Longer record will reduce sampling uncertainty

Previous estimates of low cloud feedback derived from stratocumulus likely too positive

- Probably not +0.4 W m⁻² K⁻¹ (Myers and Norris 2016, substantial uncertainty range)
- Probably about 0 W m⁻² K⁻¹, with substantial uncertainty range

Subtropical stratocumulus exerts a strong positive feedback, but...

- Not representative of trade cumulus and midlatitude cloud
- Only covers a relatively small area of Earth

Extra Slides

Observed Low Cloud Response to Upper Cloud

- L_n' has near-zero response to upper cloud as a predictor over most of global ocean, as expected if there is no correlation between L_n' and U'
- *L_n* increases with upper cloud in western tropical Pacific, suggesting that actual low-level cloud increases with upper-level cloud in that region
- L' decreases in response to upper cloud as a predictor over most of global ocean, as expected if increasing upperlevel cloud obscures more low-level cloud

Adjusted Low Cloud Response to SST

Without **U'** as a predictor

